skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Marais, G Christopher"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Kajtoch, Łukasz (Ed.)
    This study presents an initial model for bark beetle identification, serving as a foundational step toward developing a fully functional and practical identification tool. Bark beetles are known for extensive damage to forests globally, as well as for uniform and homoplastic morphology which poses identification challenges. Utilizing a MaxViT-based deep learning backbone which utilizes local and global attention to classify bark beetles down to the genus level from images containing multiple beetles. The methodology involves a process of image collection, preparation, and model training, leveraging pre-classified beetle species to ensure accuracy and reliability. The model's F1 score estimates of 0.99 and 1.0 indicates a strong ability to accurately classify genera in the collected data, including those previously unknown to the model. This makes it a valuable first step towards building a tool for applications in forest management and ecological research. While the current model distinguishes among 12 genera, further refinement and additional data will be necessary to achieve reliable species-level identification, which is particularly important for detecting new invasive species. Despite the controlled conditions of image collection and potential challenges in real-world application, this study provides the first model capable of identifying the bark beetle genera, and by far the largest training set of images for any comparable insect group. We also designed a function that reports if a species appears to be unknown. Further research is suggested to enhance the model's generalization capabilities and scalability, emphasizing the integration of advanced machine learning techniques for improved species classification and the detection of invasive or undescribed species. 
    more » « less
    Free, publicly-accessible full text available June 5, 2026